skip to main content


Search for: All records

Creators/Authors contains: "Biswas, Pratim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Oxy-combustion systems result in enriched CO 2 in exhaust gases; however, the utilization of the concentrated CO 2 stream from oxy-combustion is limited by remnant O 2 . CH 4 oxidation using Pd catalysts has been found to have high O 2 -removal efficiency. Here, the effect of excess CO 2 in the feed stream on O 2 removal with CH 4 oxidation is investigated by combining experimental and theoretical approaches. Experimental results reveal complete CH 4 oxidation without any side-products, and a monotonic increase in the rate of CO 2 generation with an increase in CO 2 concentration in the feed stream. Density-functional theory calculations show that high surface coverage of CO 2 on Pd leads to a reduction in the activation energy for the initial dissociation of CH 4 into CH 3 and H, and also the subsequent oxidation reactions. A CO 2 -rich environment in oxy-combustion systems is therefore beneficial for the reduction of oxygen in exhaust gases. 
    more » « less
  2. null (Ed.)
    Organometallic halide perovskite (MAPPbBr 3 ), Rust-based Vapor Phase Polymerization (RVPP)-PEDOT hole transporting layers and (RVPP-PEDOT)/MAPPbBr 3 dual-layer, deposited on fluorine doped tin oxide glass were studied at room temperature using steady-state absorption, time-resolved photoluminescence imaging and femtosecond time-resolved absorption spectroscopy. Application of these techniques in conjunction with diverse excitation intensities allowed determination of various optoelectronic properties of the perovskite film and the time constant of the hole extraction process. Spectral reconstruction of the bandedge absorption spectrum using Elliot's formula enabled separation of the exciton band. The binding energy of the exciton was determined to be 19 meV and the bandgap energy of the perovskite film was 2.37 eV. Subsequent time-resolved photoluminescence studies of the perovskite film performed using a very weak excitation intensity followed by a global analysis of the data revealed monomolecular recombination dynamics of charge carriers occurring with an amplitude weighted lifetime of 3.2 ns. Femtosecond time-resolved transient absorption of the film performed after excitation intensity spanning a range of over two orders of magnitude enabled determining the rate constant of bimolecular recombination and was found to be 2.6 × 10 −10 cm 3 s −1 . Application of numerous high intensity excitations enabled observation of band filling effect and application of the Burstein–Moss model allowed to determine the reduced effective mass of photoexcited electron–hole pair in MAPPbBr 3 film to be 0.19 rest mass of the electron. Finally, application of transient absorption on RVPP-PEDOT/MAPPbBr 3 enabled determination of a 0.4 ps time constant for the MAPPbBr 3 -to-PEDOT hole extraction process. 
    more » « less
  3. null (Ed.)
    This study presents a comprehensive investigation on the aerosol synthesis of a semiconducting double perovskite oxide with a nominal composition of KBaTeBiO 6 , which is considered as a potential candidate for CO 2 photoreduction. We demonstrate the rapid synthesis of the multispecies compounds KBaTeBiO 6 with extreme high purity and controllable size through a single-step furnace aerosol reactor (FuAR) process. The formation mechanism of the perovskite in the aerosol route is investigated using thermogravimetric analysis to identify the optimal reference temperature, residence time and other operational parameters in the FuAR synthesis process to obtain the highly pure KBaTeBiO 6 nanoparticles. It is observed that particle formation in the FuAR is based on a mixture of gas-to-particle and liquid-to-particle mechanisms. The phase purity of the perovskite nanoparticles depends on the ratio of the residence time and the reaction time. The particle size is strongly affected by the precursor concentration, residence time and the furnace temperature. Finally, the photocatalytic performance of the synthesized KBaTeBiO 6 nanoparticles is investigated for CO 2 photoreduction under UV-light. The best performing sample exhibits an average CO production rate of 180 μmol g −1 h −1 in the first half hour with a quantum efficiency of 1.19%, demonstrating KBaTeBiO 6 as a promising photocatalyst for CO 2 photoreduction. 
    more » « less
  4. While there has been rapid progress in the performance of perovskite solar cells, the details of film formation, effect of processing parameters and perovskite crystal structure are still under discussion. The details of the X-ray diffraction (XRD) pattern of the tetragonal phase of CH 3 NH 3 PbI 3 perovskite existing at room temperature are often overlooked, with unresolved (002) (at 2 θ = 13.99° for CuK α and q = 0.9927 Å −1 ) and (110) (at 2 θ = 14.14° and q = 1.003 Å −1 ) peaks considered to be one peak at 14°, leading to an inaccurate estimation of lattice parameters. In this study, we use an electrospray deposition technique to prepare perovskite films at room temperature, oriented in (002) and (110) directions, with (002) as the preferred orientation. The results of a detailed study on the emergence of the two orientations during perovskite formation are reported. The effect of process parameters, such as substrate temperature during deposition and annealing temperature, on the grain orientation was established using XRD and grazing incidence wide angle X-ray scattering (GIWAXS). The study suggests that an irreversible crystal reorientation from (002) to (110) occurs at high temperature during rapid annealing, whereas a reversible crystal thermal expansion is seen during slow annealing. Finally, the results of the grain reorientation are correlated with the film properties, and it is shown that the film with the dominant (110) orientation has improved morphology and optoelectronic properties. The detailed structural investigation and characterization presented in this study are important for the precise determination of crystal orientation and achievement of desirable photovoltaic properties of the absorber material by carefully observing the adjacent crystal plane peaks in the XRD pattern of the perovskite thin films. 
    more » « less
  5. null (Ed.)